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ABSTRACT

435" /

Violent bubble behavior observed in liquids contained in a vertically
vibrating tank is analyzed both theoretically and experimentally. The
behavior is characterized by the cccurrence of bubble motions that are
contrary to usual buoyancy conditions, and of a pressure resonance well
below the resonant frequency of a pure liquid column. It is found that the
most violent part of the behavior is a result of a water hammer pressure
resonance in a bubbly liquid-air mixture contained in an elastic tank. The
theory set forth explains the entire behavior quite satisfactorily as
evidenced by good agreement between the theory and experiments for the

conditions studied. )
o
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INTRODUCTION

A number of investigators have observed that small vapor bubbles
entrained in a column of liquid which is vibrated in a vertical direction do
not always rise and vent from the liquid, but in some cases will remain
suspended, migrate toward the walls of the container, or even sink to the
container bottom. Such behavior of gas bubbles in liquids subjected to
vibration has become of increasing interest because of its possible appli-
cation to liquid fuel rockets and space vehicles. The occurrence of gas
bubbles in liquid propellants can have detrimental effects on the performance
of high speed turbine pumps, and therefore on the overall performance of
a vehicle. Since intense vibrational conditions exist during various phases
of the launch and flight of moest vehicles, it immediately becomes necessary
to determine whether these conditions are capable of producing the undesir-
able bubble behavior. The purpose of the present study is to obtain a better
understanding of such bubble behavior in order to help make thisdetermi-
nation.

Basically, the present work involves a preliminary experimental
study conducted to observe the qualitative aspects of the bubble behavior,
the development of a theory to explain the behavior and subsequent exper-
imental studies conducted to obtain data to correlate with the developed

analysis. A review of previous studies of bubble motion in vertically



vibrated liquids has been conducted and reported in [1]; therefore, a
summary of all of those studies will not be presented here. However, since
the analysis of the present work is essentially a modification of the theory

developed by Bleich [ 2], his work will be discussed in some detail.




PRELIMINARY EXPERIMENTS

Previous investigators [ 2, 3,4] have observed varicus bubble
motions in liquids in vertically vibrated tanks, and have advanced a few
theoretical analyses aimed at explaining the behavior. Although qualitative
prediction of some of the observed behavior was accomplished, quantitative
correlation of experiments with the theory was not good,

Preliminary experiments were conducted in the present study to
observe qualitatively the various bubble motions that occur in vertically
vibrated tanks, and to get preliminary data which would either tend to
support the previously developed theories, or indicate the necessity of
developing a new theory. These experiments were conducted primarily
ina 24,13 cm (9'-1/2 inch) diameter, 0.635 ¢m (1/4 inch) wall, 99,1
cm (39 inch) high, transparent acrylic plastic circular cylindrical tank,
having a thick flat aluminum bottom. The preliminary observationswere
performed by visually observing bubble behavior in a 76.2 cm (30 inch)
column of water in the tank, while it was vibrated at various accelerations
on a mechanical shake table, Because of the shake table design, frequency
was limited to 55 cps or less and table displacement amplitude to 0.152 cm
(0.060 inch) or less,

A variety of complicated bubble behavior was observed in these
experiments, depending on the vibrational input coenditions, However, for

the sake of brevity, the overall behavior wiil be summarized with the aid




of Figures 1 through 4, as it was cbserved to occur in the case of fixed
input condition of 7 g's acceleration at about 45 cps frequency™.

The onset of the behavior is shown in Figure 1. The overall
surface motion at this time appears tc be a high frequency spray super-
imposed on a large amplitude low frequency motion in the first antisym-
metric slosh mode occurring with rotation, This viclent surface agitation
entrains air bubbles at various depths under the liquid surface, and, at
about 7 g's or more vibrational acceleration, these bubbies do not return
to the liquid surface but stream dewnward tc the bottem of the tank. The
deeper the bubble is initially thrown from the surface, the more readily
it sinks to the container bottom.

As the sinking bubbles reach the container bottom, they begin to
coalesce into a cluster which continualiy grcws as more bubbles reach
the bottom as shown in Figure 2, Stroboscope cbservation of the cluster
at this time reveals that the entire cluster pulsates at the same frequency
as the container motion, and,as the bubble cluster grows, the phase of
the bubble pulsation begins to lag behind that of the container. Inaddition,
pressures in the tank bottom alsc begin tc grow in amplitude. This is an
accelerating process for more and more bubbles stream downward to the

tank bottom.

*In addition, a sound motion picture [ 5] of the preliminary experiments,
including slow motion studies, is available.



Suddenly the cluster growth and motion becomes extremely violent
as is shown in Figure 3. At this time, the cluster at the bottom pulsates
with a very large amplitude while other bubbles rapidly shoot downward
from the intensely agitated surface. Pressures in the tank bottom are
about 40 psig positive and cavitation pressure negative during this violent
pulsation.

After a relatively short period of such violent motion, the whole
picture abruptly changes. As can be seen in Figure 4, the entire sequence
of the behavior ends as the bubble cluster rises irom the tank bottom to a
new stable position somewhere in the body of the liquid; the liquid surface,
however, continues its violent sloshing. The level to which the cluster
rises depends on the vibrational conditicns as well as the amount of air
entrained in the cluster. The cluster appears to remain at this intermediate
level indefinitely, as long as the vibrational conditions are maintained,
and as loeng as more air is not injected intc the liquid. Subsequently, raising
the frequency, but holding displacement amplitude constant, appears to
bring the cluster nearer the surface, while lowering the frequency causes
the cluster to seek a lower level in the tank., If the cluster is lowered in
this manner, ultimately some critical vibrational conditions are reached
at which the cluster can no longer remain submerged, and it vents to the
surface. In some cases this is not until the cluster reaches the bottom.

As the cluster vents, the violent surface motion ceases,



The entire sequence of events described above takes place in a
relatively short time, depending on the vibrational conditions. At 7 g's
acceleration and 45 c¢ps frequency, itcanoccur in as little as 15 seconds
with the most violent part of the cluster motion occurring in less than
one second., During the entireprocess, pressure amplitudes in the container
bottom were observed to grow as the bubble grows, and were observed
to lag more and more behind the container motion, until, during the violent
behavior, pressures were very high and lagged the container by about
90°%*, After the cluster rose in the liquid, the pressure amplitudes
subsided considerably, and their phase with the container motion was
between 90° and 180°, This behavior seems to indicate the cccurrence of
a pressure resonance for constant input conditicns,

A pressure probe was used to obtain the pressure distribution at
various points in the tank during vibrational conditions less severe than
those requiredto entrain bubbles from surface motion., It was found that
in many cases the pressure amplitudes were higher than those predicted
for an incompressible fluid in a rigid rank. The pressure distributions
were nonlinear with depth, although they were essentially independent of
radial position at a given depth. This suggested that the elasticity of the
container had to be included in any analysis of the problem since the

pressure oscillations in the tank appeared to form a water hammer type

*The pressure forces were so large at this time, in fact, that one of the
experimental tanks was ruptured in the course of the tests.



of wave in which the container walls coupled with the liquid, Further, for
conditions where bubbles lowered into the liquid, the increase of dynamic
pressure with increasing volume of entrained air indicated that the percent-
age of air in the liquid also affected the velocity of the water hammer wave,
as one might have immediately suspected.

The belief that the elasticity of the container and the entrained air
in the fluid significantly affected the entire process was further strengthened
by additional observations that were made of similar bubble behavior in a
76.2 ¢m (30 inch) column of water contained in a smaller 6,99 cm (2-3/4
inch) diameter, 0.318 cm (1/8 inch) wall, 99.1 cm (39 inch) high, trans-
parent arcylic plastic tank mounted on an electrodynamic shaker, Higher
excitation frequencies could be obtained, but a smaller diameter tank was
required because of the much reduced force output of this shaker in com-
parison to that of the mechanical shaker described previously. In this tank,
it was found that a pressure resonance did in fact occur at much lower
frequencies that those predicted for water in a rigid tank, even with
practically no air in the liquid, and, as airbecame entrained in the liquid,
the resonance could be caused to occur at even lower frequencies.

The entire bubble behavior described above is composed of a large
number of individual events, yet the one part which seems to be the most
significant is that in which the individual bubbles initially begin to sink to
the container bottom, for once this occurs all the rest of the process

naturally follows, It is this aspect of the bubble behavior which was



previously investigated by Bleich [ 2] and for which a theoretical analysis
was set forth., The results of this analysis, which are summarized in the
next section, were applied to the present tanks in order tc predict the
acceleration amplitude required to cause small bubbles to sink when
injected at a given depth into a vibrating tank of water. For comparison
with these predictions, afew preliminary experiments were carried out in
the present tanks by injecting small bubbles with a long hypodermic tube.
In all cases it was found that considerably less acceleration was required
than that predicted by Bleich's theory, assuming the tanks to be rigid and
the water as incompressible. ) Hence, as suggested by the previous pre-
liminary experiments, it was necessary to modify Bleich's theory by
allowing for the compressibility of the composite system of liquid, entrained

air, and elastic tank,



THEORETICAL ANALYSIS

In his analysis Bleich | 2] develops two differential equations
which describe the motion of an isolated bubble in a vertically vibrated
liquid, and the change in the volume of the bubble caused by the associated

pulsating pressure field. They are

A 2 A_-_ P A
A +Q% A= 2 (1)

and

0 . o
Ta?[(a+3A)z]=-2(a+3A)(%—3§+g> (2)

-where a is the equilibrium radius of the bubble at a depth z below the sur-
face of an unvibrated liquid; p is the dynamic part of the: fluid pressure
caused by the vibrations, and % its gradient; & is the change in the bubble
radius, i. e., the bubble radius at any time is a +A;Q = (3'}/p1 /paz)l/Z

is the natural frequency of spherically symmetric pulsations of the
bubble [ 6] in a fluid of density p at a depth z where the equilibrium
pressure is P> and v is the pclytropic constant, equal to 1.4 for adiabatic
bubble pulsations and 1.0 for isothermal pulsations. These two coupled
equations were originally derived, using energy principles and Lagrange'’s
equations, in a much more complicated nonlinear form than shown here.
By using an order of magnitude analysis, Bleich reduced them to the
partially linearized form given in Eqs. (1) and (2). Eg. (1) merely states

that the variation in the size of the bubble is determined by the variation in
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the fluid pressure at the bubble location, and Eq. (2) implies that the instan-
taneous vertical velocity, %, of the bubble is determined by its instantaneous
bouyancy.

In these equations, itwas assumed that the bubble is located in an
infinite body of fluid., A more accurate but still approximate calculation
taking into account the finite size of the fluid container shows that the first
term in Eq. (1) should be multiplied by the factor (1 + 2 ah/RZ) where R is
the radius of the tank*., However, 2ah/RZ is usually not very large com-
pared to unity, and, as will be seen subsequently, the entire first term in
Tq. (1) is generally very small compared to the second term; thus, in this
analysis Eq. (1) is used as Bleich orginally stated it. Bleich also assumed
that the effects of viscosity could be neglected; consequently, Eq.(2) is not
valid when the bubble velocity is a sizable fraction of its terminal velocity
for a reasonable length of time. It appears, however, that this assumption
is very well justified in all of our experiments. A more serious limitation
is that the attraction of the pulsating bubble by the free surface and the
container walls has been neglected. Hence Eqgs. (1) and (2) are good
approximations only when the bubble is located in the interior of the fluid.
Finally, the effects of the bubble on the fluid pressure in the vicinity of
the bubble were also assumed to be very small, and the sloshing of the free

surface was neglected.

*This term corrects the ''virtual mass'' of the bubble pulsations for a finite
container, In an unlimited fluid the virtual mass is erpa‘?’u The calcula-
tions leading to the correction factor are very lengthy, and hence are not
reproduced here,
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As shown in Figure 5, the tank is vibrated with a motion given by
Xy €0s wt. For this condition, the dynamic pressure in a perfectly rigid

tank and for a perfectly incompressible fluid can be expressed as

p = -pzxow2 cos wt.
Using this formula in Egs. (1) and (2), and setting the time average of the
bouyancy force equal to zero, as shown by Bleich, leads to the resultthat

for a vibrational acceleration amplitude given by

w*x ivﬁz (1 = ) "
=1 + — 3
g L Y pgn (3)

the bubble is in unstable equilibriumat adepth h. Ataslightly greater depth

the bubble will sink, ata slightly smaller depth the bubble will rise, Bleich
carried out a few experiments in a plastic tank, but he was only able to con-
firm Eq. (3) qualitatively. As discussed previously, our preliminary
experiments also did not check with Eq. (3),

Subsequently, Bleich treated the bubble dynamics in an elastic tank
by substituting into Egs. (1) and (2) the pressure equations he had derivedin
an earlier paper [ 7). His results for this casewere quite complicated,and,
as a matter of fact, he gave no numerical calculations since he pointed out
that his test tank was ''rather rigid' because the natural frequency of the
ring vibrations* of the tank was much larger than the excitational fre-
quency. He tentatively ascribed the difference between theory and

experiment to the effects of viscosity.

*Axially symmetric breathing vibrations.
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In the present study the preliminary experiments indicated the pre-
sence of pressures greater than those occuringina rigid tank. By analogy
with water hammer waves, we know that it is possible to have large pressure
amplifications in longitudinally excited pipes at frequencies considerably
smaller than either the natural frequency of the ring vibrations of the pipe
- or the '""organ pipe'' frequency of the column of fiuid. Hence, a much better
correlation of theory and experiment should be possible if the correct fluid
pressure in an elastic tank were used in (1) and (2). But the problem of
determining these pressures, even for an inviscid fluid, is extremely com-
plex, especially as regards the velocity of propagation of the pressure
wave, see, for example, Refs, 8,9,10,11,12, and 13, Since Eqgs. (1) and
(2) are themselves somewhat approximate, and since the effects of liquid
and structural damping, as well as free surface sloshing, on the pressure
wave are very difficult to evaluate, a really complete pressure analysis is
not warranted here. A relatively simple approach which still includes the
elasticity of the tank is used instead. The method is similar to that used
in water hammer analysis, i.e., we assume that the pressure is uniform
across any section of the tank, that the deflection of the tank wall is equal
to the static deflection caused by the instantaneous fluid pressure, and that
longitudinal and bending deflections in the wall can be neglected. For low
excitationfrequencies, Bleich's results [ 71 reduce to this condition; the
analysis presented here, however, is a good deal simplér than Bleich's

and the results are easier to use in numerical calculations.
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The first item needed in the analysis is the water hammer wave
velocity, or effective speed of sound, for a plane wave propagating axially
in the fluid., The usual water hammer wave velocity, however, must be
modified to include the effect of the gas dissolved in the liquid since it is
possible that considerable quantities of gas bubbles may be present.
Hence, let s = ratio of the volume of gas dissolved or entrained in the
ligquid, usually assumed to be in the form of small bubbles homogeneously
distributed throughout the liquid [ 14,15], to the total volume of the gas
and liquid. Consequently, the mean density of the gas-liquid mixture is

p'—‘(l-s)p£+spg _ (4)

where p, is the density of the liquid and Pg the density of the gas.
The effective compressibility of the gas-liquid-tank system
is

K= (1 -s) Kg+ sKg + K¢ (5)

where Ky, Kg, and Kt are the individual compressibilities of the liquid,
gas, and tank separately. For an ideal gas, Kg = (‘Yp)—l [16], where
p is the gas pressure; p varies with depth in the liquid, buthere the variation
is neglected and the compressibility is evaluated at the ullage pressure.
The compressibility of the tank for this type of wave is K¢ = D/bE [17],
where D is the tank diameter, b the tank wall thickness, and E the modulus

of elasticity of the tank material.
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Hence,

K= (1 -s) K,+— P = (6)
Yp, bE

By definition, the wave velocity is ¢ = (pK)'l/Z so that

c ={[(1 -5) pg + spg] [(1 -5) K, +ﬂ% +—b%]}.l/Z (7)

Eq. (7) is shown graphically in Figure 6, for various values of p, and a
typical value of D/b = 39.0 for our large experimental tank. It should be
noted, however, that Eq. (7) only gives a correct order of magnitude value
of the wave velocity, chiefly because the compressibility of the tank is over-
estimated in Eq. (6); moreover, the exact quantity of gas in the liquid,
i. e., the value of s, is difficult to measure experimentally., For these
reasons, an experimentally determined wave velocity, measured by a
procedure given in the Appendix, is used in all of the numerical calcula-
tions. But, Eq. (7) does give a correct qualitative picture, and, as can
be seen from Figure 6, quite small values of the speed of sound should
be expected.

The fluid pressures can now be determined by treating the pressure
wave as a one-dimensional acoustic wave traveling with a velocity c.
Thus, if £ (z,t) are the fluid particle displacements measured from their
equilibrium positions, then

o’ 1 9% .
922 cZ  att
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The boundary conditions require that

£ (L,t) = x cos wt (9)

and
o -
Bz (0’ t) - O (10)

where Eq. (10) implies that the free surface dynamic pressure is zero.

Assuming that
£ (z,t) = £{(z) cos wt

requires that

cos
g(z,t)=xo ———— cos wt (11)

Y]
cos I

0lg
N

|
S

in order to satisfy the conditions (9) and (10). Since the pressure is

0
pc2 gi‘ we see that

sin2 z
p(z,t) = ~pCwXy ————— CcOos wt (12)

0
os = 1
cos ¢

For a rigid tank and imcompressible fluid, c-s»00, and in this case

ﬁﬁpzxowz cos wt, which checks with Bleich's results for a rigid tank.



Eq. (12) can now be substituted into Eq. (1) to yield

. W
Q)XOC S1N = 2
R+Q%A = , S cos wt (13)

a
cos £ ¢
c

or

. W
wX C sin-—< 2

A = fo) C cos wt
- an2 2 (14)

cos g 1-Ww_

C QZ

Since 2 is generally larger than 1,000 cps, the ratio %Z— will be neglected
in comparison to unity in the subsequent calculations;

The critical value of z, thatis, the depth h for bubbles that just
start to sink, can be found from Eq. (2) by requiring that the average
bouyancy over one cycle of motion be zero, i.e.,, it must be required that

Average of (a + 34) (% gg + g) =0 (15)

Eq. (15) reduces to

3A . 85
< p]:o (16)

ag + Average of [T Py

\
where A( is the value of & correspondidg to the critical value of z.

Solving Eq. (16) gives:

16
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3 Z A w:h- 0) h
- pcw XO sin —=— COSE

2g “— (17)
YP1 cosz(—"—’- f—)
c
But py = py + pgh so that
u)zxo Iin Z-(—‘::-}l 1/2 Po 1/2
= 2y {1+ — (18)
g | wh (1 + cos éw_f) pgh
c c

This equation can be further expressed in terms of nondimensional

variables by using the substitutions

_—,a._.

¢:Zw'e -—ll.
C {

so that it becomes

w2x 2 sin o 1/2 1 p 1/2
o) sin S _ Fo
() [steeam] -[205)] o

It can be seen that this is a modified form of Eq. (3), the only difference

being the factor by which the acceleration is multiplied.* The reciprocal
of this factor is shown plotted in Figure 7 for ¢ up to 2w, The full signif-
icance of Eq. (19) will be discussed later in connection with the experimen-
tal results; here, it is merely pointed out that for 0 < ¢ < 7 the required

acceleration, wzxo, is always less than that for a perfectly rigid tank.

*It might be pointed out that Eq. (19) can be obtained by substituting our
Eq. (12), p. 15, into Eqgs. (29) and (33) of Bleich's analysis [ 2].



Finally, in a rigid tank the motion of the bubble is determined by

2
w"Xg Po .
and —, In the elastic tank model analyzed
g Pg

here, however, five parameters are required:

three parameters: ¥,

wzxo 2wl Po h

Y, y — = ¢, —~ and — = a,

g c pgt !

18
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COMPARISON OF RESULTS

As was mentioned earlier, for an appropriate vertical acceleration
amplitude acting on a rigid tank, Bleich's theory predicts that one unstable
equilibrium plane will occur at some level h, above which bubbles rise,
and below which bubbles sink to the container bottom. When the tank
elasticity is included, Bleich predicts that both stable and unstable planes
of equilibrium can occur under certain conditions, and that bubbles move
away from the unstable planes and collect at the stable planes. It will be
seen that for the present case, both of these patterns of behavior will
occur under various conditions.

Different patterns of bubble behavior are determined by the varia-

tion of the factor

2 sin a¢ 1/2
ad {1+ cos ¢)

with both a and ¢ in Eq, (19). For ¢<m and any value of a, only one

unstable equilibrium plane exists in the tank, so that it acts much like

a rigid tank. For ¢> m both stable and unstable equilibrium planes can
exist in the tank, depending on a, For increasing ¢> w, the pattern
becomes more and more complicated. Of course, for ¢ = nm where n is
an odd integer, a state of pressure resonance exists in the water hammer
wave system and very little acceleration (theoretically none) is reqﬁired

to produce the bubble behavior.
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Eq. (19) predicts the behavior of small bubbles that are injected
into a liquid-air mixture vibrated in an elastic tank. This equation is
shown plotted in two different forms in Figures 8 and 9, along with cor-
relating experimental data. These experimental data were obtained from
the two different tanks mentioned earlier. In all cases,the data were
obtained by injecting small bubbles into the liquids at various levels, while
vibrating the tanks under given conditions, and visually observing whether
the bubbles moved up or down in the liquid, and whether they sank to the
container bottom, or collected at some imtermediate level in the tank.
This procedure had to be performed very carefully to avoid giving the
bubbles appreciable initial velocities. In addition, the equilibrium levels
from which bubbles either moved away or at which they collected were
not sharply defined, but rather occupied a narrow band such that bubbles
meandered more or less in the vicinity of these bands, and moved rapidly
only after leaving them. As a result the exact levels of the equilibrium
planes were difficult to determine and some scatter in the data resulted.

For the data of Figures 8 and 9, bubbles were injected into the
tanks only after the liquid was swept relatively free of any air bubbles
initially present. The speed of water hammer waves for any mixture
conditions could be determined using the methods outlined in the Appendix,
but it was difficult to maintain a constant amount of air in the water. There-
fore in order to obtain consistent results, the tanks were initially swept

clear of air bubbles by agitating the tanks under a partial vacuum ullage
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pressure prior to taking data. The speed of the water hammer wave for

the data was then measured prior to injecting the small bubbles, and the

effect of the small amount of injected air on the wave velocity was neglected.
Figure 8 shows a direct plot of Eq. {19) for the two limiting values

of ¥y =1.0 and v = 1.4. Plotting the curves in this manner, along with the

experimental data taken under various conditions, allows one to decide

which value of ¥ most nearly fits the actual process. It can be seen that

the data appeared to fit the ¥ = 1.0 curve best. As indicated on the plot,

the data were taken in both tanks and for various values of all the para-

. . . P
meters in the dimensionless number 1 Po_

a pgl

was necessarily held constant. Water and kerosene were used for two

, except that the acceleration g

different liquids at various depths, and ullage pressure was changed by
subjecting the tank to a partial vacuum.

Figure 9 shows experimental data taken from both tanks using
76.2 c¢cm (30 inches) of water with an ullage pressure of one atmosphere.
Here the acceleration required to cause an air bubble to be in equilibrium
(stable or unstable) is plotted against the depth ratic,a, each curve for a
constant value of ¢. It may be noted that ¢ = 0 corresponds to a rigid tank
and ¢ = m corresponds to the first mode pressure resonance of the water
hammer wave. For a given ¢-curve (corresponding to a constant value
of = 2wl /c) and a given depth h, a bubble will sink for all acceleration
values below the curve. It may be noted that for ¢ less than about 2.0, and

for a fixed acceleration input large enough to cause the bubbles to begin to
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sink, the bubbles will sink completely to the container bottom. However,
for values of ¢ greater, or even somewhat less than m, bubbles injected
above a rather shallow depth will rise, but begin to sink if injected at more
moderate depths, and eventually collect at a lower, stable depth. Bubbles
injected below the lower, stable depth will rise up to this level. As a
specific example, consider the ¢ = 4,0 curve with 6.0 g's acceleration.
Bubbles injected above a = 0.16 depth ratio will return to the surface, while
bubbles injected below this value sink and subsequently collect at a depth
value of a = 0.64. Bubbles injected below a = 0. 64 will rise up to that
depth value.

The experimental data agree very well with the predicted behavior.
All of these data were taken by injecting small bubbles into the tanks and
visually observing the levels from which the bubbles moved away in the
case of an unstable level and the level at which they collected in the case of
a stable one. It may be noted that the liquid depth used was always more
than one tank diameter. All values for ¢ = 1.5 were taken in the large
plastic tank. Data for appreciably larger values of ¢ could not be cbtained
for this tank, as mentioned earlier, because it was necessary to excite
the larger tank by means of the frequency limited mechanical shaker. The
data for the three values of ¢> ™ were taken in the smaller tank, which
could be excited by the electrodynamic shaker. In this range (where
the pressure essentially helped drive the shaker), relatively large accelera-

tions could be obtained, but data for ¢< m was not obtained since the
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acceleration amplitudes at these frequencies were not large enough to
cause sinking bubbles. The fact that the tank diameter appears in the
theory only as it affects the water hammer wave velocity is supported by
these data. However, this is true cnly as long as the bubbles are small
compared to the tank diameter, and probably only for liquid depths greater
than one tank diameter.

It has been mentioned that for incrgasing ¢> m the bubble behavior
pattern becomes increasingly complicated. This is illustrated in Figure
10 in which the behavior for 76.2 cm (30 inches) of water in the smaller
tank is shown for a value of ¢ =9.75and 4 g's acceleration. The equil-
ibrium planes are shown, the upper one being unstable, the second stable,
the third unstable, and the fourth stable. Bubble migration directions are
indicated by the arrows. Experimental data for such large values of ¢

were not obtained.
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EXPLANATION OF OVERALL BUBBLE BEHAVIOR

In view of the preceding analysis and experimental correlations, it
is now possible to give a complete explanation of the overall bubble behavior
illustrated in Figures 1 through 4. This will be done with the aid of Figure 9.

With very little air initially in the liquid,the wave velocity, c, is
1100 ft/sec (see Appendix). At 7 g's vibrational acceleration and 45 cps
(6 = 1.29), bubbles will sink at first only if injected below a depth ratio
of about a = 0.35 (26,7 ¢cm or 10.5 inches) as can be seen from Figure 9.
However, as air bubbles become entrained in the liquid by violent surface
motion, the wave velocity immediately begins to decrease {see Figure 6),
hence ¢ increases. The more that ¢ increases the more readily the
bubbles will sink from near the surface even if the input vibrational
conditions are maintained constant. Hence, bubbles begin to sink and a
cluster forms and grows at the container bottom where the bubbles collect.

Since an unstable condition exists, the process accelerates until at
¢ =7, corresponding to the first mode preésure resonance in the water
hammer wave system, the most violent bubble behavior occurs and dynamic
pressures are very large. As a result of the large quantity of air that
is entrained in the liquid as the pressure resonance occurs, a value of
¢> 7 ultimately results, the exact value depending on the amount of air

entrained, and the whole pattern of bubble behavior changes. According
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to Figure 9,if, say, ¢ = 4.5 results, bubbles can no longer sink below about
a = 0.4, and the bubble cluster rises from the container bottom to about
a depth corresponding to this value of a.

At this point the process beccmes stable, for appreciable amounts
of air can no longerbe entrained from the surface, and,if it could, the further
increased value of ¢ would simply cause the cluster to rise slightly nearer
the liquid surface. If the frequency is subsequently lowered, holding exci-
tation amplitude constant, both acceleration and ¢ are reduced. The
reduced ¢ requires that the cluster be stable at a lower level in the tank,
which agrees with experimental observations. Ultimately,the acceleration
becomes too small evenfor ¢ decreasing toward m(since there is damping
present) and the cluster can no longer be supported below the surface so that
it vents. When this occurs, of course, the system then retains a value of
¢.< .

In effect, the whole process starts in a system which initially has
a pressure resonance at about 110 cps, well above the 45 cps excitation.
As the behavior develops, a change in the compressibility of the system
occurs, so that the resonant frequency rapidly decreases, passes through
the excitation frequency, and ultimately ends up below the excitation fre-
quency. Hence, all of the observed behavior can be explained with the
theory developed. However, some quantitative deviation can be expected
for at least one important reason--the theory assumes a homogeneous

distribution of bubbles, which is not strictly correct during all phases
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of the overall behavior. In addition,itis surmised that deviaticns would
exist for liquid levels {£) below one tank diameter, where the assumed
pressure distribution would no lenger be valid.

Of course, a leogical question now arises as to the pessible signi-
ficance of this behavior in an actual space vehicle. One further experiment
was performed to help answer this question; the results are shown in Figure
11. The 24.13 cm (9-1/2 inch) diameter tank was fitted with an elliptical
plastic bottom having a single 0.19 cm (3/4 inch) drain at the very bottom--
a design similar to a number of actual space vehicles. This tank was
excited vertically on the mechanical shaker and simultaneously drained. It
was found that for conditions where bubbles sank to the tank bottom, a cluster
did not form, but all the bubbles immediately surged into the drain pipe--a
very serious situation for a space vehicle. The bubbles can readily be seen
approaching the drain in Figure 11, although the drain itself cannot be seen

because of the cylindrical bottem stiffener.
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CONCLUSIONS

The modified Bleich theory appears to be adequate for predicting
the observed bubble behavior so long as the assumed conditions exist. In
the present experiments, this meant the existence of a system in which a
water hammer standing wave could be formed. It is apparent that for a
low aspect ratio, more flexible tank, such as those used in space vehicles,
the assumptions of plane waves will no longer be adequate. But, the present
study indicates that the basic Bleich equations (1) and (2) for bubble behavior
can adequately predict bubble behavior in a vibrating liquid providing the
proper pressure distribution and gradient for a given tank is incorporated
into them. In other words, in order to use these equations to predict
bubble behavior, it is obviously imperative that the dynamic pressure
field be adequately knownfor a giventank. Wall effects did not appear to be
grossly significant in the present experiments.

Probably the first problem that would arise in a space vehicle
because of the bubble behavior reported herein is the passing of the bubbles
into the drain pipe and pumping system. In addition, if the entire process
occurred, it is apparent that very high dynamic pressures could be experi-
enced in parts of the propellent system, much as has actually been
experienced in so called ''pogo oscillations' of some vehicles.

If a space vehicle tank subjected to vertical oscillation has a pressure

field at all like that of the present tanks, it may readily be seen from
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Figure 8 that the lowering of bubbles could occur in a large tank at rela-

tively low acceleration values, even in a fairly rigid tank. Since the

. . . 1
composite dimensionless parameter -

cculd be less than, say, 10.0
€ pgﬂ

for a full size tank,and, since most vehicle tanks are relatively flexible,
it would appear that bubbles sinking into the drain could be a distinct pos-
sibility. An accurate prediction, however, would require that the pressure

field of a full size tank be incorporated into Bleich's equations.
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APPENDIX

The water hammer wave velccity, c,had tc be determined for use in
the parameter ¢ = _Z_C‘.*’__"_ , for each tank used to obtain data. Necrmally this
phase velocity is obtained by the classical method of ocbserving experimentally
the frequency at which the first mode pressure resonance occurs and then
solving for ¢ from a value of $ = m. This method actually was used to deter-
mine ¢ in the smaller tank, however, it could not be used in the larger tank,
since the mechanical shaker could not achieve the frequency at which the first
mode pressure resonance occurred when using relatively degassed water
in this tank.

A somewhat different method using the pressure distributicn as
given by equation (12} was utilized. Pressure measurements taken
in the smaller tank indicated that equation (12} adequately predicted the
pressure distribution for water in that tank at liquid depths well over one
tank diameter and for various values ¢f ¢ in the range 0 <¢ <2w. Therefore,
it was assumed that this equation should alsoc adequately predict the pressure
distribution in the larger tank under similar depth conditions. Using a
pressure probe, pressure distributicn data were taken in the larger tank
for two different frequencies, each at several different excitation
amplitudes. As shown in Figure A-1, these data were then plctted and

£
compared to theoretical curves, each for a constant value of ¢ = 2w .

(o}




The single value of ¢ which made both sets of data best fit the theorectical
curves was then taken to be the proper value for the water hammer wave
velocity.

Using these methods,it was found that for relatively degassed water
in the small tank ¢ = 1380 ft/sec, and for the larger tank ¢ = 1100 ft/sec.
Of course these procedures could also be used to determine c for a liquid-
air mixture in the tanks, provided that the amount of air in the liquid could
be maintained constant,and a method of determining the air volume to total

volume ratio was developed.
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FIGURE I. ONSET OF BUBBLE BEHAVIOR
AT LIQUID SURFACE




FIGURE 2. CLUSTER GROWING AT TANK BOTTOM




FIGURE 3. CLUSTER BEHAVIOR DURING MOST
VIOLENT MOTION




FIGURE 4. CLUSTER LOCATION AFTER MOST
VIOLENT MOTION
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